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TRANSIENT RESPONSE OF A THERMAL-DIFFUSION
COLUMN WITH BUFFER VESSELS AT THE ENDS

G. D. Rabinovich, V. M. Dorogush, UDC 621.039.3
and A, V. Suvorov :

The transient response in a column with buffer vessels at the ends has been determined for the
approximation ¢l — ¢) = ¢ +be, and this is compared with the asymptotic solution for small
times; the range of application of the latter has been determined.

Asymptotic solutions have been derived [1, 2] for the transient response in a thermal-diffusion column

with buffer vessels at the ends for two ways of approximating the nonlinear term in the transport equation,
namely, ¢(l —c) ® aand c(1 — ¢) =~ ¢; it was found that these asymptotic solutions can themselves be approx-
imated very closely by linear relationships of the form

A vE W
T

in which p and r are coefficients to be determined from experiment and which allow one to calculate the Soret
coefficient, However, uncertainty arises as to the time range in which each of the asymptotic solutions applies
when this method is used.

one,

The problem has been solved by deriving an exact solution, which is then compared with the asymptotic

- The problem is formulated [3] as follows: we have the differential equation

dc _ o de(l—o)]

@)

) oy? Jy
to be solved subject to the boundary conditions
Cloco =00 (4> 0), (3)
dc dc
g, | S, l—c)] 6> 0), 4
09 ly=0 [ 0y ( y= ( ( )
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Y0, o ‘ = [C(I_C)—'-a‘c—} ©>0). (5)
o

!
a8 Y=y, y=y,

Since (4) and (5) contain a nonlinear term, an exact solution cannot be obtained, but there is a method based
on the following approximation first used in [4]:

c(l—e)=a - be, )

which for concentration differences Ac = ¢ — ¢, <. 0.03 gives an error less than 1% in the range 0,01 <
¢y < 0,99, with

Q= b=1—0c,—¢p. ‘ ‘ (6a)

The concentration shifts in fact lie within the above limits in measurements on the Soret coefficient, so the
substitution of (6) can be made in @) and (5). ‘

The problém was solved in {5] in this formulation but the results contained errors.
We introduce the new variables
u=c—cy; y*= by, 6% ="5%, 7
to put (2)-(5) with (6) in the form
dy - 0% 9y

a0t g oyt @®)
y*o, Ou =( Ou —-u) _ G(l—ey) , ©)
¢ 00* jyr—0 ay* y*=0 b
ou Ou ) c(1—¢yp) '
*o, = (u— -tz 10
beo 90% iyr=y, ( oy* Jyr=y b 10
tlge_o=0. . (11)

Laplace — Carson integral transformations are used with (9)-(11) to get the solution to (8) in the following

form; ’ ‘

. o ¥
ll=c) 7 o =

U=

AchAg*+ (; + y;*coip) sh xy*] —

1
—hehd (g — )+ 5 — viop) shilu? — i) X
. 1 -1
x oz @ o gy + (14 Z ure—0)t y:%oimep] shig| 2

where ' |
r=1/ pt (13)

and p is an operator.

Consider the case where one of the vessels at the end of the column is very large, i.e., we put w; —~
© or wg — « in (12); then for the positive end (y* =yg) we get instead of (12)

¢y (1 — ) . shagk

U, =

. _ (14)

b Ach?»y;"—l—( *aw, ———é—) shiy*
and for the negative end (y* = 0)
i = ¢ (1 b—co) ' shiy* : ‘ 15)
Achiy* 4 (y;"mip+ E) shay#*
We introduce the symbols '
ge;%e--l-—;—:k, x = (k——l)ze*, | (16)
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_— bue .. 2%k —1 (17)

e(l—c) 2

and transfer from the transform in (15) to the original via the expansion theorem to get

%1 1 B i ek Y
Ve =5y {e"p [ o @E—1) } "1}+ % 2 TRE— P P11, ,
where
Cp= l rﬁm%————*—*——(%?f‘l)z ] rachrg + [ rio (1 +o,) + _@;if‘j 0 } shra, ‘ (19
and the roots ry are defined by
thr, = Qkfk(;_)z;‘;;’;z o (20)

We see from (20) that there are only imaginary roots for k< 0, whereas the purely imaginary rootsareaccom-
panied by one real root if we(@k — 1)2/2k < 1; the summation in (18) must be taken over all roots.

We now find the asymptotic solutions for small times from (14) and (15).

If the times are small (p is large) and if y; is not too small, we can [1] put

chAy® =~ shhy¥. 1)
Then after certain steps we get
—  G{l—cy) 1 N I
= B Fyrar L1 R (22)
VP+T“? PET T e, TS
7= — {1 —¢y)

! I
T bl —gre) (l/ L1 1 1\' 23)
p+ gt p+T‘——y§‘m- —7 )

i

We revert to the originals in (22) and (23) and use (16) and (17) to get
1 =2k (+ 2k—1) + 2k—1 [ 1 4p% L ] J
X

+
2%—1 | 2(x2+ )

. Vx ) + 2%k —1 x x 1
Xe“(j—jk—l tImrrlV T | Emoy |t

+ 2841 (+ 2+ 1)2x +2k+1

+ 2k (£ 2k —1) 2k 1 2k -
exp |—— x| erf¢c [~ Vx|, 24
T 1y p(i%—l) (t%—lV) @
where the plus sign relates to the positive end of the column and the minus sign, to the negative one, with
Co (1 —¢p) 2x

and variable u must be given the subscript e or i as appropriate,

If we put x = 0 in (24), we get v =1, while for the case b =0, which corresponds in accordance with

(7) and (16) to k — «, we get an expression given in [1] by resolving the indeterminacy:
2 1 -
V= — — " (1 —eferic k). (26)
vV nx x

We now find from (12) expressions for the concentration changes at the positive and negative ends for a
column having vessels of finite size at the ends and for small times, i.e,, subject to the condition of (21);
after simple steps we get expressions identical with (22)-(24).

Then for small times corresponding to the condition of (21) the concentration change at either end is
independent of the change at the other end; however, in that case, a difference from the solution of [5] is that
the changes will not be symmetrical, i.e.,, lugl = lujl.
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TABLE 1. Values of v as a Function of Dimensionless Time x and
Dimensionless Volume w for Various Values of yg we

! x

© 0,1 0,2 0,3 0,4 0.5 0,6 0,7 0,8 0,9 1,0
y:(:.)e=2
0,500 .| 0,815 0,787 |0,768|0,754]0,74310,735{0,728| 0,723 0,71‘8 0,714
1,000 © 0,832 0,796 |0,773]0,757|0,7430,731(0,72110,711|0,701 0692
%Ogl() 0,833 0,78 |0,746(0,711,0,678]0,648}0,619{0,592 | 0,567 | 0,544
TO
(24) 0,836 0,797 [0,77510,759 0,747 0,738 0,731 10,725/0,720|0,716
2
.’/eme - —3_
0,300 0,834 0,771 |0,733]0,706 0.684'0,667 0,652|0,639 0,628 | 0,618
0,400 0,827 0,768 [0,731)0,704,0,6830,666 0,651 0,638]0,6270,617
1,000 0,816 0,762 {0,727/0,699(0,6760,656|0,637{0,620|0,604|0,588
2,000 0,814 0,751 10,699}0,653]0,611|0,574 0,539 0,508]0,480 0,453
3,000 0,803 0,715 |[0,641]0, 577 0,52310,47610,4340,399 0,367 | 0,340
From )
(24) | 0,815 |. 0,762 0,727 0,701 0,680 0,664 10,649|0,637]0,6260,616

|

N
Y =

0,200 0,805 0,748 {0,709!0,6800,656|0,636|0,61910,604 0,591 0,579

0,300 0,807 0,749 |0,710]0,68110,657]0,637)0,619 /0,604 | 0,591 0,579
0,400 0,810 0,751 10,711;0,6810,657|0,637 0‘620 0,605 0,5910,579
0,500 0,810 0,750 }0,711)0,681)0,657|0,637 |0,620]0,605}0,5910,579

1,000 0,808 0,749 10,710|0,679}0,652:0,629 (0,608 ;0,688 0,569 0,552
F2,0()() 0,807 0,739 }0,682|0,6330,5890,550 0,514 0,482]0,453 0,426
rom
(24) 0,808 0,749 1{0,710|0,681]0,657|0,637{0,6190,604 | 0,591 | 0,579

y:me =—6

0,300 0,683 0,537 |0,436/0,3620,307|0,265|0,231{0,205!0,183|0,166
0,400 0,683 0,537 10,436]0,362|0,3070,265|0,231}0,205, 0,183 0,166
0,500 0,683 0,537 |0,436|0,3620,307(0,265|0,231(0,205|0,183}0,166
1,000 0,685 0,537 0,4360,3620,3070,264| 0,231 (0,204 (0,183 {0,165
2,000 0,683 0,533 |0,429;0,353:0,297|0,2550,222{0,196{0,175{0,158
3,000 0,676 0,617 |0,4080,331{90,276|0,235/0,203;0,179|0,160|0,144

From
(24) 0,683 | 0,537 |0,436]0,362|0,307 | 0,265 0,231 |0,205 0,183 0,165
Yoo =—8

0,200 | 0,640 | 0,474 |0,3670,294|0,24310,2050,177(0,1560,130 0,125
0.300 | 0,640 | 0,474 |0,367|0,2940,243/0,205|0,177 0,156|0,139|0,125
0,400 | 0,640 | 0,474 |0.367|0.294 0,243]0.05 |0,177 |0,156]0,139|0,125
0,500 | 0,640 | 0,474 |0,367 0.294|0,243/0.205 0,177 0,156 |0,139| 0,125
1,000 | 0,639 | 0474 |0.367|0,294|0,243|0,205|0,177|0,156] 0,139 |0,125
2,000 | 0,640 | 0.472 |0,363|0,290|0,239/0,202 0,174 0,153|0,136| 0,123
2000 | 0}635 | 0461 |0,351|0,278|0,228|0192 0,165 0,145 0,129 0,116
rom

(24) 0,640 | 0,474 |0,367]0,294|0,243] 0,205 0,171 %1%¢{ 0,139 | 0,125

The solution of (18) was used for comparison with the results given by (24); a computer was used to
calculate the roots of (20) and the values of v from (18) and (24). The latter are given in Table 1, which
shows that for yé“ we > 0 any increase in this parameter reduces the range in w for which the solution to
(24) agrees well with (18) up to the values x =1, Onthe other hand, inthe region y* we < 0, the two solutions
are virtually coincident up to w ~ 2 for the entire range of variation in x. Consequenuy, measurements of
the Soret coefficient with fairly large volumes at the column ends should best be performed with ye we < 0,
which is always possible by taking samples for analysis from the upper or lower vessel, the choice being
determined by the one in which the concentration of the target component is reduced.

It is important that agreement between (18) and (24) is obtained over a wide range in x, since it en-
ables us to increase the runtime, and this is necessary when the mixture has a smallSoret coefficient and
the concentration shifts cannot be measured with sufficient precision in small times,
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NOTATION

2 2 2.3 2.7
¢, concentration; Ac, concentration change, 7,time; ¢ =H? 7/mK, H=gp ﬂéa(AT) Bs/61n, K=g’p p%6 -

(ATY’B/9 I7°D, m = pB6; B, perimeter of separating slot; 0, gap: AT, temperature difference between hot
and cold surfaces: s, Soret coefficient; y = Hz/K; z, vertical coordinate; w = M/ mL; M, mass of mixture in
tank; L, working length of a column. Indices: e, i, positive and negative ends of a column; 0, initial value.
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MODEL OF DIFFUSION TAKING INTO ACCOUNT SORPTION

V. I. Maron UBC 533.73

The problem of the diffusion of a material in an adsorbing porous medium is considered. Inthe
equation for the concentrations in the porous medium and the sorption layer a delay time is in-
troduced.

The problem of the diffusion of material in an adsorbing porous medium is considered. Henry's law is
assumed to hold for equilibrium values of concentration in the porous medium and in the sorption layer., This
problem is considered, ina linear formulation, in a number of works where the kinetics of the process and
diffusional transfer are taken into account; a review of such works appears in [1, 2],

The formulation of the problem outlined in the present paper differs from previous accounts in that a
delay time is introduced in the equation relating the concentrations of the material in the porous medium and
in the sorption layer. - )

If the conceniration of the material in the sorbent layer is assumed to attain its equilibrium value at
once, then Henry's law implies that its distribution will follow the distribution of the material in the porous
medium. It is more general to assume that the distribution of material in the layer follows the distribution
in the porous medium with some delay. The basis for this assumption is given in [3].

We infroduce a delay time 7, assumed to be identical at all points of space. We denote the concentra-
tion of material in the flow by ®(, x) and the concentration in the sorption layer, by a(t, x). Onthe basis of
the given assumptions, the following relation exists between these functions:

a{t, ) =T0{t—r, x), t>1, a=0, i< 1)
"Thus, the function a ¢, x) defined by Eq. (1) vanishes for t < r, and reaches its equilibrium value corre~

sponding to the concentration of the material &(, x) not at once, but 7 units of the argument t later.

We shall show that for small values-of the delay time r, Eq. (1) gives the kinetic equation. To this end,
we expand the function ®¢ — r, x) in a Taylor series int:
00

Q¢ —r, x) =0, x)_(Ta?) T @)
=0
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